111 research outputs found

    Extending the spectrum of Ellis van Creveld syndrome: a large family with a mild mutation in the EVC gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ellis-van Creveld (EvC) syndrome is characterized by short limbs, short ribs, postaxial polydactyly, dysplastic nails and teeth and is inherited in an autosomal recessive pattern. We report a family with complex septal cardiac defects, rhizomelic limb shortening, and polydactyly, without the typical lip, dental, and nail abnormalities of EvC. The phenotype was inherited in an autosomal recessive pattern, with one instance of pseudodominant inheritance.</p> <p>Methods</p> <p>Because of the phenotypic overlap with EvC, microsatellite markers were used to test for linkage to the <it>EVC/EVC2 </it>locus. The results did not exclude linkage, so samples were sequenced for mutations.</p> <p>Results</p> <p>We identified a c.1868T>C mutation in <it>EVC</it>, which predicts p.L623P, and was homozygous in affected individuals.</p> <p>Conclusion</p> <p>We conclude that this <it>EVC </it>mutation is hypomorphic and that such mutations can cause a phenotype of cardiac and limb defects that is less severe than typical EvC. <it>EVC </it>mutation analysis should be considered in patients with cardiac and limb malformations, even if they do not manifest typical EvC syndrome.</p

    Extending the spectrum of Ellis van Creveld syndrome: a large family with a mild mutation in the EVC gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ellis-van Creveld (EvC) syndrome is characterized by short limbs, short ribs, postaxial polydactyly, dysplastic nails and teeth and is inherited in an autosomal recessive pattern. We report a family with complex septal cardiac defects, rhizomelic limb shortening, and polydactyly, without the typical lip, dental, and nail abnormalities of EvC. The phenotype was inherited in an autosomal recessive pattern, with one instance of pseudodominant inheritance.</p> <p>Methods</p> <p>Because of the phenotypic overlap with EvC, microsatellite markers were used to test for linkage to the <it>EVC/EVC2 </it>locus. The results did not exclude linkage, so samples were sequenced for mutations.</p> <p>Results</p> <p>We identified a c.1868T>C mutation in <it>EVC</it>, which predicts p.L623P, and was homozygous in affected individuals.</p> <p>Conclusion</p> <p>We conclude that this <it>EVC </it>mutation is hypomorphic and that such mutations can cause a phenotype of cardiac and limb defects that is less severe than typical EvC. <it>EVC </it>mutation analysis should be considered in patients with cardiac and limb malformations, even if they do not manifest typical EvC syndrome.</p

    Molecular and clinical analysis of Ellis-van Creveld syndrome in the United Arab Emirates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ellis-van Creveld (EvC) syndrome is an autosomal recessive chondrodysplastic condition with clinical manifestations that include short-limbs and ribs, postaxial polydactyly and dysplastic nails and teeth. In about two thirds of patients, mutations in either <it>EVC </it>or <it>EVC2 </it>genes have been found to be the underlying cause.</p> <p>Methods</p> <p>In this paper, we describe the molecular (DNA sequencing) and clinical analysis of six children diagnosed with EvC from four different families from the United Arab Emirates (UAE).</p> <p>Results</p> <p>All the children had the common clinical and radiological features of this syndrome. However, DNA sequence analysis of the genes shown to be involved (<it>EVC </it>and <it>EVC2</it>) revealed a novel splice site mutation (c.2047-1G>T) in intron 13 of <it>EVC2 </it>gene in one family. In addition, we confirm previous mutational analyses that showed a truncating mutation in exon 13 of <it>EVC </it>gene (c.1813C>T; p.Q605X) in the second family and a single nucleotide deletion (c.981delG; p.K327<it>fs</it>) in exon 8 of <it>EVC2 </it>gene in the third family. No mutations in the exons, splice sites or the promoter regions of either gene have been found in the index case of the fourth family who exhibited "EvC-like" features.</p> <p>Conclusions</p> <p>Given the small population size of UAE, our data illustrates further the molecular heterogeneity observed in EvC patients and excludes the possibility of a common founder effect for this condition in the UAE reflecting the current ethnic diversity of the country.</p

    Ellis-Van Creveld syndrome

    Get PDF
    Ellis-van Creveld syndrome (EVC) is a chondral and ectodermal dysplasia characterized by short ribs, polydactyly, growth retardation, and ectodermal and heart defects. It is a rare disease with approximately 150 cases reported worldwide. The exact prevalence is unknown, but the syndrome seems more common among the Amish community. Prenatal abnormalities (that may be detected by ultrasound examination) include narrow thorax, shortening of long bones, hexadactyly and cardiac defects. After birth, cardinal features are short stature, short ribs, polydactyly, and dysplastic fingernails and teeth. Heart defects, especially abnormalities of atrial septation, occur in about 60% of cases. Cognitive and motor development is normal. This rare condition is inherited as an autosomal recessive trait with variable expression. Mutations of the EVC1 and EVC2 genes, located in a head to head configuration on chromosome 4p16, have been identified as causative. EVC belongs to the short rib-polydactyly group (SRP) and these SRPs, especially type III (Verma-Naumoff syndrome), are discussed in the prenatal differential diagnosis. Postnatally, the essential differential diagnoses include Jeune dystrophy, McKusick-Kaufman syndrome and Weyers syndrome. The management of EVC is multidisciplinary. Management during the neonatal period is mostly symptomatic, involving treatment of the respiratory distress due to narrow chest and heart failure. Orthopedic follow-up is required to manage the bones deformities. Professional dental care should be considered for management of the oral manifestations. Prognosis is linked to the respiratory difficulties in the first months of life due to thoracic narrowness and possible heart defects. Prognosis of the final body height is difficult to predict

    Highly Anomalous Energetics of Protein Cold Denaturation Linked to Folding-Unfolding Kinetics

    Get PDF
    Despite several careful experimental analyses, it is not yet clear whether protein cold-denaturation is just a “mirror image” of heat denaturation or whether it shows unique structural and energetic features. Here we report that, for a well-characterized small protein, heat denaturation and cold denaturation show dramatically different experimental energetic patterns. Specifically, while heat denaturation is endothermic, the cold transition (studied in the folding direction) occurs with negligible heat effect, in a manner seemingly akin to a gradual, second-order-like transition. We show that this highly anomalous energetics is actually an apparent effect associated to a large folding/unfolding free energy barrier and that it ultimately reflects kinetic stability, a naturally-selected trait in many protein systems. Kinetics thus emerges as an important factor linked to differential features of cold denaturation. We speculate that kinetic stabilization against cold denaturation may play a role in cold adaptation of psychrophilic organisms. Furthermore, we suggest that folding-unfolding kinetics should be taken into account when analyzing in vitro cold-denaturation experiments, in particular those carried out in the absence of destabilizing conditions

    Jeune syndrome: description of 13 cases and a proposal for follow-up protocol

    Get PDF
    Jeune syndrome (asphyxiating thoracic dystrophy, ATD) is a rare autosomal recessive skeletal dysplasia characterized by a small, narrow chest and variable limb shortness with a considerable neonatal mortality as a result of respiratory distress. Renal, hepatic, pancreatic and ocular complications may occur later in life. We describe 13 cases with ages ranging from 9 months to 22 years. Most patients experienced respiratory problems in the first years of their life, three died, one experienced renal complications, and one had hepatic problems. With age, the thoracic malformation tends to become less pronounced and the respiratory problems decrease. The prognosis of ATD seems better than described in literature and in our opinion this justifies long term intensive treatment in the first years. We also propose a follow-up protocol for patients with ATD

    Ciliopathies: an expanding disease spectrum

    Get PDF
    Ciliopathies comprise a group of disorders associated with genetic mutations encoding defective proteins, which result in either abnormal formation or function of cilia. As cilia are a component of almost all vertebrate cells, cilia dysfunction can manifest as a constellation of features that include characteristically, retinal degeneration, renal disease and cerebral anomalies. Additional manifestations include congenital fibrocystic diseases of the liver, diabetes, obesity and skeletal dysplasias. Ciliopathic features have been associated with mutations in over 40 genes to date. However, with over 1,000 polypeptides currently identified within the ciliary proteome, several other disorders associated with this constellation of clinical features will likely be ascribed to mutations in other ciliary genes. The mechanisms underlying many of the disease phenotypes associated with ciliary dysfunction have yet to be fully elucidated. Several elegant studies have crucially demonstrated the dynamic ciliary localisation of components of the Hedgehog and Wnt signalling pathways during signal transduction. Given the critical role of the cilium in transducing “outside-in” signals, it is not surprising therefore, that the disease phenotypes consequent to ciliary dysfunction are a manifestation of aberrant signal transduction. Further investigation is now needed to explore the developmental and physiological roles of aberrant signal transduction in the manifestation of ciliopathy phenotypes. Utilisation of conditional and inducible murine models to delete or overexpress individual ciliary genes in a spatiotemporal and organ/cell-specific manner should help clarify some of the functional roles of ciliary proteins in the manifestation of phenotypic features

    The primary cilium as a dual sensor of mechanochemical signals in chondrocytes

    Get PDF
    The primary cilium is an immotile, solitary, and microtubule-based structure that projects from cell surfaces into the extracellular environment. The primary cilium functions as a dual sensor, as mechanosensors and chemosensors. The primary cilia coordinate several essential cell signaling pathways that are mainly involved in cell division and differentiation. A primary cilium malfunction can result in several human diseases. Mechanical loading is sense by mechanosensitive cells in nearly all tissues and organs. With this sensation, the mechanical signal is further transduced into biochemical signals involving pathways such as Akt, PKA, FAK, ERK, and MAPK. In this review, we focus on the fundamental functional and structural features of primary cilia in chondrocytes and chondrogenic cells
    corecore